PHYS6051: Astronomy & Instrumentation

Module Details			
Module Code:	PHYS6051		
Title:	Astronomy & Instrumentation APPROVED		
Long Title:	Astronomy & Instrumentation		
NFQ Level:	Fundamental		
Valid From:	Semester 1 - 2019/20 (September 2019)		
Duration:	1 Semester		
Credits:	5		
Field of Study:	4411 - Physics		
Module Delivered in:	3 programme(s)		
Module Description:	This module gives the student an introduction to the science, optics, instrumentation and data analysis associated with Astronomy.		

Learning Outcomes			
On successful con	On successful completion of this module the learner will be able to:		
#	Learning Outcome Description		
LO1	Describe and explain optical systems used in astronomy		
LO2	Describe and explain methods and instrumentation used for photon detection in astronomy		
LO3	Describe the evolution and structure of the Universe		
LO4	Explain the Solar System in terms of its origins and structure		
LO5	Use instrumentation and software for image acquisition and data analysis		
Dependencies			

Dependencies		
Module Recommendations		
Incompatible Modules		
No incompatible modules listed		
Co-requisite Modules		
No Co-requisite modules listed		
Requirements		
No requirements listed		

Indicative Content

Methods and instrumentation used for photon detection in astronomy
Observations windows for astronomy, Photometry methods. CCD, CMOS imagers. Photomultiplier tubes. Instrumentation for detection at different wavelengths.

Describe and explain optical systems used in astronomy

Types of telescope. Performance metrics. Practical limitations to performance due to the atmosphere - optical aberrations etc. Celestial coordinates. Recording images using CCDs.

Explain the Solar System in terms of its origins and structure
The Sun, Earth and Moon, inner planets, outer planets. Exploration and search for life in the solar system. Space travel within the solar system. Satellites & Space junk

Describe the evolution and structure of the Universe
The Big Bang and expansion of the Universe. Stars and Galaxies. Origin of the elements. Supernovae and Black Holes.

Laboratory experiments in astronomy

Analysis of sun spot data from the SIDC, working with bias/dark/flat frames produced by a CCD camera, astronomical image processing and the impact of the atmosphere on image acquisition, using planetarium software to understand coordinate systems and telescope fields of view.

Module Content & Assessment		
Assessment Breakdown	%	
Coursework	100.00%	

Assessments

Coursework					
Assessment Type	Short Answer Questions	% of Total Mark	35		
Timing	Week 7	Learning Outcomes	1,2		
Assessment Description This assessment tests the knowledge and understanding of optical and data acquisition systems used in Astronomy					
Assessment Type	Short Answer Questions	% of Total Mark	35		
Timing	Week 12	Learning Outcomes	3,4		
Assessment Description This assessment deals with the science associated with the foundation and evolution of the Solar System and Universe					
Assessment Type Practical/Skills Evaluation % of Total Mark		30			
Timing	ing Every Second Week Learning Outco		5		
Assessment Description Laboratory reports and skills test examinations on practical aspects of the module.					

No End of Module Formal Examination

Reassessment Requirement

Coursework Only

This module is reassessed solely on the basis of re-submitted coursework. There is no repeat written examination.

Workload: Full Time					
Workload Type	Contact Type	Workload Description	Frequency	Average Weekly Learner Workload	Hours
Lecture	Contact	Delivery of module content.	Every Week	3.00	3
Lab	Contact	Laboratory experiments in astronomy.	Every Week	1.00	1
Independent Learning	Non Contact	Study of module material.	Every Week	3.00	3
Total Hours					7.00
Total Weekly Learner Workload				7.00	
Total Weekly Contact Hours				4.00	

Workload: Part Time					
Workload Type	Contact Type	Workload Description	Frequency	Average Weekly Learner Workload	Hours
Lecture	Contact	Delivery of module content.	Every Week	3.00	3
Lab	Contact	Laboratory experiments in astronomy.	Every Week	1.00	1
Independent Learning	Non Contact	Study of module material.	Every Week	3.00	3
Total Hours					7.00
Total Weekly Learner Workload				7.00	
Total Weekly Contact Hours				4.00	

Module Resources

Recommended Book Resources

Roger A. Freedman, Robert M. Geller, William J.. (2019), Universe, 11th. 27, WH Freeman, p.896, [ISBN: 1319248640]. Eric Chaisson, Steve McMillan. (2014), Astronomy Today, 8th. 28, Pearson, p.828, [ISBN: 9781292057736].

Steve B Howell. (2006), Handbook of CCD Astronomy, 2nd. 7, Cambridge University Press, p.224, [ISBN: 0521617626].

This module does not have any article/paper resources

Other Resources

Website, Blackrock Castle Observatory, https://www.bco.ie

Website, European Southern Observatory, https://www.eso.org/public/ireland/

Website, European Space Agency, https://www.esa.int/ESA

Website, NASA,

https://www.nasa.gov/

Website, Astronomy Picture of the Day, https://apod.nasa.gov/apod/astropix.html

Website, Space Weather, http://www.spaceweather.com

Planetarium Application, Stellarium, http://stellarium.org/

Interactive Online Sky Atlas, Centre de Données Astronomiques de Strasbourg. Aladin Sky Atlas, https://aladin.u-strasbg.fr/

Module Delivered in				
Programme Code	Programme	Semester	Delivery	
CR_SCHEM_7	Bachelor of Science in Analytical and Pharmaceutical Chemistry	-1	Mandatory	
CR_SPHYS_7	Bachelor of Science in Applied Physics and Instrumentation	-1	Elective	
CR_SPHYS_6	Higher Certificate in Science in Applied Physics and Instrumentation	-1	Elective	