CHEM6007: Physical Chemistry

Module Details				
Module Code:	CHEM6007			
Title:	Physical Chemistry APPROVED			
Long Title:	Physical Chemistry			
NFQ Level:	Fundamental			
Valid From:	Semester 1 - 2019/20 (September 2019)			
Duration:	1 Semester			
Credits:	5			
Field of Study:	4421 - Chemistry			
Module Delivered in:	3 programme(s)			
Module Description:	This module develops the concepts of thermodynamics, chemical equilibrium and kinetics, and electrochemistry			

Learning Outcomes			
On successful completion of this module the learner will be able to:			
#	Learning Outcome Description		
LO1	Describe the gaseous and liquid states of matter and their properties		
LO2	Explain basic physicochemical laws, concepts and equations		
LO3	Explain the thermodynamic basis of chemical and physical equilibria		
LO4	Perform unit-based physicochemical calculations in a problem-solving context		
LO5	Use a range of experimental techniques for the measurement/determination of physicochemical parameters		

Dependencies				
Module Recommendations				
Incompatible Modules				
No incompatible modules listed				
Co-requisite Modules				
No Co-requisite modules listed				
Requirements				
No requirements listed				

Indicative Content

States of Matter

Gases: Ideal and real gases; theoretical models; liquefaction; critical region; Liquids: viscosity; surface tension; refractive index

Thermodynamics
Laws of thermodynamics; thermodynamic parameters (Free energy, enthalpy, entropy) and relationships; reaction spontaneity; chemical equilibria and reaction quotient

Phase equilibria
Phase diagrams; ideal and non-ideal solutions; miscible and immiscible systems; distillation; eutectics; thermal analysis

Chemical Kinetics

Collision Model Theory, Reaction Rate Determination Methods; Kinetic versus thermodynamic control; energetics of reactions, catalysis; rate laws;

Electrochemical concepts
Basic electrochemical cells, Nernst Equation; Electrolysis, electrode potentials and potentiometry; ; electrochemical applications

Practical Physical Chemistry
The practical programme will involve (i) the investigation and measurement of physical properties of liquids, (ii) the determination of the enthalpies of processes, (iii) determination of equilibrium constants, (iv) phase equilibrium studies, (v) kinetic studies, and (vi) electrochemical measurements.

Module Content & Assessment			
Assessment Breakdown	%		
Coursework	100.00%		

Assessments

Coursework				
Assessment Type	Short Answer Questions	% of Total Mark	25	
Timing	Week 7	Learning Outcomes	1,2,4	
Assessment Description Theory test				
Assessment Type	Short Answer Questions	% of Total Mark	25	
Timing	Week 13	Learning Outcomes	1,2,3,4	
Assessment Description Theory test				
Assessment Type Practical/Skills Evaluation		% of Total Mark	50	
Timing	Every Week	Learning Outcomes	4,5	
Assessment Description Practical performance, calculations a	and practical reports. Lab data manipulation and	assignments.		

No End of Module Formal Examination

Reassessment Requirement

Repeat examination

Reassessment of this module will consist of a repeat examination. It is possible that there will also be a requirement to be reassessed in a coursework element.

Module Workload

Workload: Full Time					
Workload Type	Contact Type	Workload Description	Frequency	Average Weekly Learner Workload	Hours
Lecture	Contact	Delivery of Theory and related calculations	Every Week	3.00	3
Lab	Contact	Practical Skills Development	Every Week	2.00	2
Independent & Directed Learning (Non-contact)	Non Contact	Personal study	Every Week	2.00	2
Total Hours					7.00
Total Weekly Learner Workload				7.00	
Total Weekly Contact Hours				5.00	

Workload: Part Time					
Workload Type	Contact Type	Workload Description	Frequency	Average Weekly Learner Workload	Hours
Lecture	Contact	Delivery of Theory and related calculations	Every Week	3.00	3
Lab	Contact	Practical Skills Development	Every Week	2.00	2
Independent Learning	Non Contact	Personal Study	Every Week	2.00	2
Total Hours					7.00
Total Weekly Learner Workload				7.00	
Total Weekly Contact Hours				5.00	

Module Resources

Recommended Book Resources

Peter Atkins, Julio de Paula. (2017), Elements of physical chemistry, 7th. OUP, [ISBN: 9780198796350].

Supplementary Book Resources

Peter Atkins, Julio de Paula, James Keeler. (2018), Physical chemistry, 11th. OUP, [ISBN: 9780198769866].

David W. Oxtoby, H. Pat Gillis, Alan Campion. (2012), Principles of Modern Chemistry, 7th.. Brooks Cole, [ISBN: 9780840049315].

W.L. Masterson, C.N. Hurley, E. Neth. (2012), Chemistry:Principles and Reactions, 7th.. Brooks Cole, [ISBN: 9781111572174].

This module does not have any article/paper resources

This module does not have any other resources

Module Delivered in				
Programme Code Programme S		Semester	Delivery	
CR_SCHQA_8	Bachelor of Science (Honours) in Analytical Chemistry with Quality Assurance	-1	Mandatory	
CR_SCHEM_7	Bachelor of Science in Analytical and Pharmaceutical Chemistry	-1	Mandatory	
CR_SCHEM_6	Higher Certificate in Science in Chemistry	-1	Mandatory	